

89BSD

Digital Output

SPECIFICATIONS

- Stainless Steel with O-Ring Seal
- Pressure/Temperature Read-Out
- Digital Output (24-bit $\Delta\Sigma$ ADC)
- ASIC Calibrated
- Absolute, Sealed Gage
- 9mm Diameter

The 89BSD is a 9mm diameter small profile, media compatible, piezoresistive silicon pressure sensor packaged in a 316L stainless steel housing. This low power 24-bit $\Delta\Sigma$ ADC digital output pressure sensor supports an I²C interface protocol and is designed for threaded O-ring mounting. A custom ASIC is used for temperature compensation and offset correction. The sensing package utilizes silicone oil to transfer pressure from the 316L stainless steel diaphragm to the sensing element. A flex cable allows the 89BSD to connect to a smaller connection terminal where size is of primary concern.

The 89BSD is designed for high performance, low pressure applications.

For a similar sensor with a plastic threaded fitting, refer to the LM pressure transducer

FEATURES

• Threaded/Weldable

• I2C Interface

Low Power: <1μA

Standby Power: <0.15µA
Supply Voltage: 1.8 to 3.6Vpc

APPLICATIONS

Level Controls

• Tank Level Measurement

Corrosive Fluids and Gas Measurement Systems

Sealed Systems

Manifold Pressure Measurement

Barometric Pressure Measurement

• Dive Computers

STANDARD RANGES

Range	BarA	BarS
0 to 006	•	•
0 to 012	•	•
0 to 018	•	•
0 to 028	•	•
0 to 030	•	•

Intermediate pressure ranges available, contact factory

PERFORMANCE SPECIFICATIONS

Supply Voltage: 3Vdc

Ambient Temperature: 25°C (unless otherwise specified)

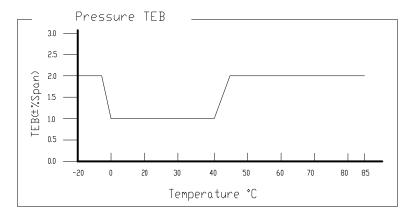
PARAMETERS	MIN	TYP	MAX	UNITS	NOTES
ADC			24	bit	
Input Voltage Range	1.8		3.6	V	2
Supply Current		See Table 1		mA	
Pressure Resolution		See Table 3		%Span	3
Pressure Accuracy		±0.3		%Span	
Total Error Band		See Graph 1		%Span	
Conversion Time		See Table 2		ms	3
Long Term Stability		±0.2		%Span/yr	
Compensated Temperature	-20		+85	°C	
Temperature Resolution		See Table 3		°C	
Temperature Accuracy	-2		+2	°C	
Operating Temperature	-40		+85	°C	
Storage Temperature	-40		+125	°C	
Pressure Overload			2X	Rated	4
Pressure Burst			3X	Rated	5
Interface Type		I ² C			6
Media, Pressure Port	Liquids ar	nd gases compatible	e with 316/316L	Stainless Steel	

Notes

- 1. Coefficients must be read by microcontroller software and are to be used in a mathematical calculation for converting D1 and D2 into compensated pressure and temperature values. For calculation methods and coefficients, see application note APP-01006.
- 2. Output is not ratiometric to supply voltage.
- 3. Accuracy: Combined linearity, hysteresis and repeatability.
- 4. Oversampling ratio: 256 / 512 / 1024 / 2048 / 4096. See Table 2.
- 5. 2X or 400psi, whichever is less. The maximum pressure that can be applied without changing the transducer's performance or accuracy.
- 6. 3X or 600psi, whichever is less. The maximum pressure that can be applied to a transducer without rupture of either the sensing element or transducer.
- 7. Output protocol is I^2C only. CSB is tied to GND, setting I^2C address: 0x77 (1110111)
- 8. Device marking: All units are marked with part number, pressure range type, lot number, serial number and date code.
- 9. Recommend Molex connector 52746-071 (or equivalent) to mate with FPC cable
- 10. Shipping: Devices are shipped individually packaged in a plastic vial with anti-static foam. For devices without fittings, diaphragms are protected by a static dissipative cap.
- 11. Direct mechanical contact with diaphragm is prohibited. Diaphragm surface must remain free of defects (scratches, punctures, dents, fingerprints, etc) for device to operate properly. Caution is advised when handling parts with exposed diaphragms. Use protective cap whenever devices are not in use.

Table 1: Supply Current Characteristics

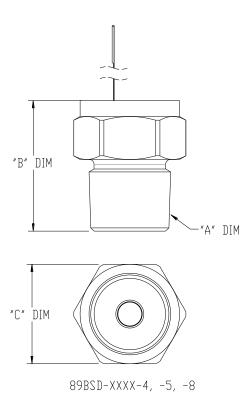
PARAMETERS	Symbol	Conditions	MIN	TYP	MAX	UNITS
Supply Current	I _{DD}	OSR 4096		12.5		μΑ
(1 Sample per second)		2048		6.3		
		1024		3.2		
		512		1.7		
		256		0.9		
Peak Supply Current		During Conversion		1.4		mA
Standby Supply Current		@ 25°C		0.02	0.14	μΑ

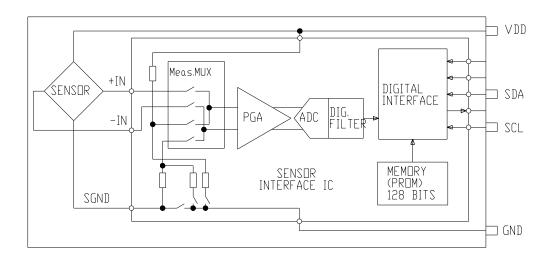

Table 2: Analog Digital Converter (ADC)

PARAMETERS	Symbol	Conditions		MIN	TYP	MAX	UNITS
Conversion Time	t _C	OSR 40	096	7.40	8.22	9.04	ms
		20	048	3.72	4.13	4.54	
		10	024	1.88	2.08	2.28	
		5	512	0.95	1.06	1.17	
		2	256	0.48	0.54	0.60	

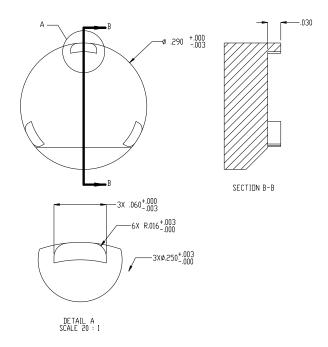
Table 3: Typical Resolution

OSR	Typical Pressure Resolution (%Span)	Typical Temperature Resolution (°C)
4096	0.0015	0.002
2048	0.0025	0.003
1024	0.003	0.005
512	0.005	0.008
256	0.008	0.012


Graph 1:


DIMENSIONS

DIMENSIONS ARE IN INCHES [MM]



BLOCK DIAGRAM

RECOMMENDED WRENCH DIMENSIONS

ORDERING INFORMATION

89BSD	— 030В	A	_	В
Model Name				
Pressure range [E	Bar]			
006B 018B	030B			
012B 028B				
Pressure Type				
A = Absolute	S = Seal gage			
Fitting Type See Fitting Type Table				

*Intermediate Pressure Ranges Available

Fitting Type Table						
Fitting Type	MEAS P/N	"A" DIM	"B" DIM	"C" DIM	"D" DIM	
4	IC-D00348	1/4-18 NPT	.82 [20.8]	5/8 [15.9] HEX	N/A	
5	IC-D00367	1/4-19 BSP	.82 [20.8]	3/4 [19] HEX		
8	IC-D00349	1/8-27 NPT	.71 [18.0]	5/8 [15.9] HEX		
Α	No Fitting, Threaded Capsule, 5/16-32 UNEF-3A 5/16-32 UNEF-3BI.25					
В	No Fitting, No Thread Capsule Ø.281.25					
NOTE:	Fitting Type '-4' assembly shown					
	All dimensions are for reference only					

株式会社 クローネ

■カタログに掲載してある製品の色は印刷インキの関係上、実際とは異なる場合があります。■製品のデザイン、仕様等などは、予告なく変更する場合があります。

本 社: 〒124-0023 東京都葛飾区東新小岩3丁目9番6号 TEL: (03) 3695-5431/FAX: (03) 3695-5698 大阪支店: 〒530-0054 大阪市北区南森町2-2-9(南森町八千代ビルF) TEL: (06) 6361-4831/FAX: (06) 6361-9360

e-mail: sales-tokyo@krone.co.jp URL: https://www.krone.co.jp

TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.